<table>
<thead>
<tr>
<th>#</th>
<th>Sponsor</th>
<th>Authors and Title</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.</td>
<td>NSF</td>
<td>P.K. Hansma and M. Panik A Tunneling Spectroscopy Study of Molecular Degradation Due to Electron Irradiation</td>
<td>Science 188, 1304 (1975)</td>
</tr>
<tr>
<td>No.</td>
<td>Source</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>32</td>
<td>NSF Sloan</td>
<td>M.C. Jalignic, D. Lambe, Kirtley and P.K. Hansma</td>
<td>Structure at 0.8 eV in Metal-Insulator-Metal Tunneling Junctions</td>
</tr>
<tr>
<td>Project</td>
<td>Funding Body</td>
<td>PI</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>78.</td>
<td>NSF</td>
<td>Robert B. Prigo and Paul K. Hansma</td>
<td>Lampost Resonance Demonstration Apparatus</td>
</tr>
<tr>
<td>79.</td>
<td>NSF</td>
<td>Jeff Drucker and P.K. Hansma</td>
<td>Emission of Energetic Electrons from Tunnel Junctions</td>
</tr>
<tr>
<td>82.</td>
<td>ONR NSF</td>
<td>R.V. Coleman, B. Drake, P.K. Hansma and G. Slough</td>
<td>Charge-Density Waves Observed with a Tunneling Microscope</td>
</tr>
<tr>
<td>83.</td>
<td>ONR NSF</td>
<td>B. Drake, R. Sonnenfeld, J. Schneir, P.K. Hansma, G. Slough and R.V. Coleman</td>
<td>A Tunneling Microscope for Operation in Air or Fluids</td>
</tr>
<tr>
<td>84.</td>
<td>ONR NSF</td>
<td>P.K. Hansma</td>
<td>IBM J. Res. & Dev.</td>
</tr>
<tr>
<td>85.</td>
<td>NSF</td>
<td>M. Liu, J. Drucker, A. King, J. Kothaus, P.K. Hansma, and V. Jaccarino</td>
<td>Observation of AFMR in Epitaxial Films of MnF$_2$</td>
</tr>
<tr>
<td>86.</td>
<td>NSF</td>
<td>K. Sonnenfeld and P.K. Hansma</td>
<td>Science</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Journal/Conference/Book</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>97.</td>
<td></td>
<td>P.K. Hansma Melastic Electron Tunneling Spectroscopy, Chapter in Book "Vibrational Atomic Resolution Images of Solid-Liquid Interfaces"</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Title</td>
<td>Journal</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>113. NSF</td>
<td>Detection of Atomic Surface Structure on NbSe₂ and NbSe₃ at 77 and 4.2K Using Scanning Tunneling Microscopy</td>
<td>Physica Scripta. 38, 235 (1988)</td>
<td></td>
</tr>
<tr>
<td>114. ONR</td>
<td>Applications of Scanning Tunneling Microscopy to the Study of Charge Density Waves</td>
<td>Science 332, 332 (1988)</td>
<td></td>
</tr>
<tr>
<td>120. NSF ONR</td>
<td>A Study of Fluorescent Intensity Emitted by ra E²⁺ Ions Near Dielectric Interfaces</td>
<td>Science 243, 641 (1989)</td>
<td></td>
</tr>
<tr>
<td>121. ONR</td>
<td>The Scanning Ion Conductance Microscope</td>
<td>The Scientist, 2 (11) p.26 June 13, 1988</td>
<td></td>
</tr>
</tbody>
</table>
Scanning Tunneling Microscopy and Atomic Force Microscopy: New Tools For Biology

130. NSF ONR

 - Scanning Tunneling Microscopy and Fabrication of Nanometer Scale Structures at the Liquid-Gold Interface
 - Scanning Microscopy 3, 719 (1989)

- **A.L. Weisenthorn, P.K. Hansma, T.R. Albrecht and C.F. Quate**
 - Forces in Atomic Force Microscopy in Air and Water
 - Imaging Polymers, Proteins and DNA in Aqueous Solutions with the Atomic Force Microscope, pp. 32-33

- **A.L. Weisenthorn, P.K. Hansma, T.R. Albrecht and C.F. Quate**
 - Scanning Ion-Conductance Microscope and Atomic Force Microscope
 - J. Vac. Sci. & Tech. A 8, 369 (1990)

- **P.K. Hansma, R. Sonnenfeld, D. Frome, D. Lea, P.K. Hansma and J.D. Andrade**
 - Determination of Tilted Superlattice Structure by Atomic Force Microscopy
 - Langmuir 6, 509 (1990)

 - Direct Observation of Immunoglobulin Adsorption Dynamics Using the Atomic Force Microscope
 - Science 247, 1330 (1990)

- **S.A. Chalmers and A.C. Gossard, A.L. Weisenthorn, S.A.C. Gould, B. Drake, and P.K. Hansma**
 - Imaging and Manipulating Molecules on a Zeolite Surface with an Atomic Force Microscope
 - Langmuir 6, 509 (1990)

- **J.N. Lin, B. Drake, A.S. Lea, P.K. Hansma and J.D. Andrade**
 - Scanning Probe Microscopy of Liquid Solid Interfaces
 - Ultramicroscopy 33, 93 (1990)

 - Scanning Tunneling Microscopy and Atomic Force Microscopy

 - Determination of Tilted Superlattice Structure by Atomic Force Microscopy
 - Ultramicroscopy 33, 93 (1990)

- **A.L. Weisenthorn, B. Dixon Northern, C.M. Peterson, S.A.C. Gould, P.K. Hansma and S. Manne**
 - Imaging Molecules and Cells with the Atomic Force Microscope

 - Imaging Molecules and Cells with the Atomic Force Microscope

 - Imaging Molecules and Cells with the Atomic Force Microscope
Ultrafine Particles of North Sea illite/smectite Clay Minerals investigated by STM and AFM

M. Hietschold, P.K. Hansma, and A. Weisenhorn

Improved Scanning Ion-Conductance Microscope Using Microfabricated Probes

P. Dietz, K. Postiopoulos, W. Kratschmer and P.K. Hansma

Size and Packing of Fullerenes on C_{60}/C_{70} Crystal Surfaces Studied by Atomic Force Microscopy

Using Force Modulation to Image Surface Elasticities with the Atomic Force Microscope

P.E. Hillner, A.J. Gratz, S. Manne and P.K. Hansma

Morphology of Polymerized Membranes on an Amorphous Substrate at Molecular Resolution by AFM

P.K. Hansma

Toward Sequencing DNA with an Atomic Force Microscope

P. Dietz, C. A. Ramos and P.K. Hansma

Novel Measurements

H. Hansma, P. Molamedi, J.C. Wittmann, P. Smith, and P.K. Hansma

Molecular Resolution of Thin, Highly Oriented Poly(diothiocarbonate) Films with the Atomic Force Microscope

P.E. Hillner, A.J. Gratz, S. Manne and P.K. Hansma

Polymer Commun.

33, 647 (1992)

Composite Spiral Growth Kinetics of Calcite Revealed by AFM

J. Membrane Sci.

65, 101 (1992)

Measuring Adhesion, Attraction and Repulsion Between Surfaces in Liquids with An Atomic Force Microscope

Trends in Cell Biology

2, 208 (1992)

Quantized Adhesion Detected with the Atomic Force Microscope

J. Hoh and P.K. Hansma

J. Vac. Sci. Technol.

B 10, 741 (1992)

A New Imaging Mode in Atomic Force Microscopy Based on the Error Signal

Measuring Adhesion, Attraction and Repulsion Between Surfaces in Liquids with An Atomic Force Microscope

Science

256, 1180 (1992)

Reproducible Imaging and Dissection of Plasmid DNA under Liquid with the Atomic Force Microscope

Phys. Rev. B

45, 11226 (1992)

Quantized Adhesion Detected with the Atomic Force Microscope

J. Hoh, J.P. Cleveland, C.B. Prater, J.P. Revel and P.K. Hansma

J. Am. Chem. Soc.

114, 4917 (1992)

Specific Protein Binding to Functionalized Interfaces

D. E. Leckband, J. N. Israelachvili and W. Kohl

Biophysical Journal

Atomic Force Microscopy of Biochemically Tagged DNA

Structure of the Extracellular Surface of the Gap Junction by Atomic Force Microscopy

Genetic Coding in Biomineralization of Microlaminate Composites

Lattice Resolution and Solution Kinetics on Surfaces of Amino Acids

H. Hansma and P. K. Hansma

Potential Applications of Atomic Force Microscopy to the Human Genome Project

A Combination of Atomic Force Microscopy and Secondary Ion Mass Spectrometry for Investigation of Al$_x$Ga$_{1-x}$As/GaAs Superlattices

Research on the Atomic Force Microscopy of DNA to the Human Genome Project

Noncontact Force Microscopy in Liquids

R. Freeman and P. K. Hansma

The AFM: A New Tool for Imaging Crystal Growth Processes

Faraday Discussion 95, 191 (1993)

Polymcrized LB-Films Imaged with a Combined Atomic Force Microscope-Fluorescence Microscope

Langmuir 8, 3614 (1992)

Precision Height Measurements of Freeze Fracture Replicas Using the Scanning Tunneling Microscope

Mapping Interaction Forces with the Atomic Force Microscope

Biophysical Journal 86, 2159 (1994)

Atomic Force Microscope Integrated with a Scanning Electron Microscope for Tip Fabrication

Recent Advances in Atomic Force Microscopy of DNA

Motion and Enzymatic Degradation of DNA in the Atomic Force Microscope

R. Giles, S. Manne, C.M. Zaremba, A. Betcher, S. Mann, D.E. Morse, G.D. Stucky and P.K. Hansma

Proceedings 1993 Fall MRS Meeting. MRS 332, 413-1994

CAS H.Y Co. SSF

M-Q. Li, H.G. Hansma, G-F Hong, X-W. Yao and P.K. Hansma

Atomic Force Microscopy of Plasmid DNA and DNA Polymerase

Science 265, 1577 (1994)

ONR NSF DF

M. Radmacher, M. Fritz, H.G. Hansma and P.K. Hansma

Direct Observation of Enzyme Activity with the Atomic Force Microscope

NSF

Supra-molecular Architectures at Functionalized Surfaces

ONR MRL/NSF DF

Flat Pearls from Biofabrication of Organized Composites on Inorganic Substrates

ONR NSF MRD

M. Radmacher, P. E. Hilliner, P.K. Hansma

Scanning Nearfield Optical Microscope using Micro-fabricated Probes

Langmuir 10, 3809 (1994)

ONR NSF MRD/NSF

M. Radmacher, M. Fritz, J.P. Cleveland, D.A. Walters, and P.K. Hansma

Imaging Adhesion Forces and Elasticity of Lysozyme Adsorbed on Mica with the Atomic Force Microscope

Langmuir 10, 4409 (1994)

ONR NSF (MCB)

S. Manne, J.P. Cleveland, H.E. Gaub, G.D. Stucky and P.K. Hansma

Direct Visualization of Surfactant Hemimicelles by Force Microscopy of the Electrical Double Layer

Biophysical Journal 66, 293 (1994)

NSF DOE(HLR)

I. Mastrangelo, M. Bezanilla, P.K. Hansma, P. Hough and H. Hansma

Structures of Large T Antigen at the Origin of SV40 DNA Replication by Atomic Force Microscopy

ONR

J.H. Hoh, P.E. Hilliner and P.K. Hansma

G. Bailey A. Garratti and G. H. Hansma

Measuring Intermolecular Binding Forces with the Atomic Force Microscope: The Magnetic Jump Method

NSF ONR

M. Radmacher, J. P. Cleveland and P.K. Hansma

Scanning Improvement of Thermally Induced Bending of Cantilevers used for Atomic Force Microscopy

17, 117 (1995)

NSF DI

M.B. Hs, C.M. Zaremba, D.L. Laney, M. Bezanilla, R.L. Sinsheimer, P.K. Hansma

Applications for Atomic Force Microscopy of DNA

NSF DI

DOE NSF-ONR

J. Garnaes, S.A.C. Gould, P.K. Hansma, and R.V. Coleman

Atomic Force Microscopy of Charge-Density Waves and Atoms on 1T-TaSe_2, 1T-TaS_2, 1T-TiSe_2 and 2H-NbSe_2

DOE NSF-ONR

J. Garnaes, S.A.C. Gould, P.K. Hansma, and R.V. Coleman

Atomic Force Microscopy of Charge-Density Waves and Atoms on 1T-TaSe_2, 1T-TaS_2, 1T-TiSe_2 and 2H-NbSe_2

Study of the Surface Cleaning Effects to the InGaAs Quantum Well Wires by Atomic Force Microscopy and Photoluminescence Spectroscopy

Langmuir 10, 3809 (1994)

238.

239.

234.

233.

232.

231.

230.

229.

228.

227.

226.

225.

224.
254. MRLNSF ONR MRDNSF ParsonsMRL
A.M. Belcher, X.H. Wu, R.J. Christensen, P.K. Hansma, G.D. Stucky and D.E. Morse
Control of Crystal Phase Switching and Orientation by Soluble Mollusc Shell Proteins
Nature 381, 56-1996

255. NSF NATO DI
N.H. Thomson, M. Fritz, M. Radmacher, J. Cleveland, C.F. Schmikt and P.K. Hansma
Protein Tracking and Detection of Protein Motion Using Atomic Force Microscopy
Biophysical Journal 70, 2421 (1996)

256. NSFMRLNSF NATO DI
D.A. Walters, J.P. Cleveland, N.H. Thomson, P.K. Hansma, M.A. Wendman, G. Gurley, and V. Ellings
Short Cantilevers for Atomic Force Microscopy

257. MRDNSF DI
K. Proksch, R. Lal, P.K. Hansma, D. Morse and G. Stucky
Imaging the Internal and External Pore Structure of Membranes in Fluid Tapping Mode Scanning Ion Conductance Microscopy

258. MRDNSF Humboldt DI
T.E. Schaffer, J.P. Cleveland, F. Ohnesorge, D.A. Walters and P.K. Hansma

259. Fribourg NATO MRDNSF DI
N.H. Thomson, S. Kasas, B.L. Smith, H.G. Hansma and P.K. Hansma
Reversible Binding of DNA to Mica for AFM Imaging Langmuir 12, 5905-1996

260. U.Fribourg NATO MRDNSF MRLNSF NSF MCB, MCB BIR, NIH, Markery Found DI

261. NSF MRK MRRL DI
D.A. Walters, B.L. Smith, A.M. Belcher, G. Paloczi, G.D. Stucky, D.E. Morse and P.K. Hansma

262. MRDNSF
M. Radmacher, P.K. Hansma
Polymer Preprints 37 587, (1996)

263. Histology U. Fribourg Lal
Biology Applications of the AFM: From Single Molecules to Organs Int. J. Imaging Syst. and Tech. 8, 151, (1997)

264. ARO NSF ONR DI

265. NSF Training ONR DI

266. NSF MRK USDA DI
B. Smith, D.R. Gallie, H. Le and P.K. Hansma

267. TES NSF ONR MURI SRC DI
Does Abalone Nacre form by Hetero-epitaxial Nucleation or by Mineral Bridges? Chem. Mat. 9 1731-1997

268. NSF CHE TES NSF MRL NSFpost UCtrain QUEST DI
S.H. Tolbert, T.E. Schaffer, J. Feng, P.K. Hansma and G.D. Stucky

269. ARO MRSEC NSF NSF MCB ONR TES
Gemini Surfactants at Solid-Liquid Interfaces: Control of Interfacial Aggregate Geometry Langmuir 13, 6382-1997

270. ARO ONR MRLNSF SeaGrant Commerce DI
A. Shen, A.M. Belcher, P.K. Hansma, G.D. Stucky and D. Morse

271. MRLNSF ONR NOAA Seagrant DI
A. Belcher, P.K. Hansma, G.D. Stucky and D.E. Morse

272. HBNIHF KFS NSFMRL DI
H. Hansma, M. Bezanilla, E. Nudler, P.K. Hansma, J. Hoh, M. Kashlev, N. Firouz and B. Smith

273. NSF DAR
J. Domke, C. Rotsch, P.K. Hansma, K. Jacobson and M. Radmacher
293 NIH
Andres F. Oberhauser, Paul K. Hansma, Mariano Carrion-Vazquez, and Julio M. Fernandez.
Stepwise unfolding of titin under force-clamp atomic force microscopy.

294. MURI DAAH04-96-1-0443, NSF DMR-9622166, NSF DMR-9622167
Johannes H. Kindt, James B. Thompson, George T. Palocci, Martha Michelenfielder, Bettye L. Smith, Galen Stucky, Daniel E. Morse, and Paul K. Hansma.
Angular Fourier Mapping; Highlighting lattice structures without destroying original data.

295. NSF DMR-9632716, NSF DMR9622169, MURI DAAH04-96-1-0443
N. Almqvist, Y. Delamo, B.L. Smith, N.H. Thomson, A. Bartholdson, B. Lal, M. Brzezinski, and Paul K. Hansma.
Micromechanical and structural properties of a peritoneal diatom investigated by atomic force microscopy.

296. NSF DMR-9988640, MURI DAAH04-96-1-0443, NSF DMR96-32716
James B. Thompson, Barney Drake, Johannes H. Kindt, Jessica Hoskins, and Paul K. Hansma.
Assessing the quality of scanning probe microscope designs.

297. NSF
Dmitri E. Makarov, Paul K. Hansma, and Horia Metiu.
Kinetic Monte Carlo simulation of titin unfolding.

298. MURI, NSF, MRL
James B. Thompson, Johannes H. Kindt, Barney Drake, Helen G. Hansma, Daniel E. Morse, and Paul K. Hansma.
Bone Indentation Recovery Time Correlates with Blond Reforming Time.

299. MURI, MRL
Lisa J. Pietrasanta, James C. Weaver, Niklas Hedin, Brad F. Chmelka, Galen D. Stucky, Daniel E. Morse, and Paul K. Hansma.
Nanostructural Features of Demosponge Biosilica.

300. NIH GM62868-01A1 (not ours)
James B. Thompson, Helen G. Hansma, Paul K. Hansma, and Daniel E. Morse.
The Backbone Conformational Entropy of Protein Folding: Experimental Measures from Atomic Force Microscopy.

301. NSF DMR- 9988640
Johannes H. Kindt, James B. Thompson, Mario B. Viani, and Paul K. Hansma.
Atomic force microscope detector drift compensation by correlation of similar traces acquired at different setpoints.

302. NSF DMR-9988640, MRL, NSF DMR96-80034
Nathan Becker, Emin Oroudjiev, Stephanie Mulz, Jason Cleveland, Paul Hansma, Cheryl Hayashi, Dmitri Makarov, and Helen Hansma.
Molecular nanosprings in spider capture-silk threads.

303. NSF DMR-9988640, NIH GM65354, NASA, NSF DMR-800034
Investigations into the polymorphism of rat tail tendon fibrils using atomic force microscopy.
Biomedical and Biophysical Research Communications (February 2003), 303: 45-52.

304. NSF DMR-9988640, NIH, NASA, NSF DMR-800034
Evidence that Collagen Fibrils in Tendons Are Inhomogeneously Structured in a Tubelike Manner.

305. NSF DMR-9988640, MRL, NIH GM65354, NASA, NSF DMR96-80034

306. NSF DMR-9988640, MRL, NIH, NASA, NSF DMR96-80034
Atomic force microscopy study of living diatoms in ambient conditions.

High Resolution AFM Imaging of Intact and Fractured Trabecular Bone.
Bone (July 2004), Vol. 35 (1): 4-10.

038. DMR0-80034, NIH GM65354, NASA/URETI NCC-1-02037, the University of Bologna, the National Research Council (NRC), and Technology Institute on Bio-Inspired Materials (TIVM).
Force Spectroscopy of Collagen Fibers to Investigate Their Mechanical Properties and Structural Organization.

039. NIH (NIDR DE10042), the NASA University Research, Engineering, and Technology Institute on Bio-Inspired Materials and the Danish Research Council (STVF).
Yue Hassenkam, Thomas Guthmann, Paul Hansma, Jason Sageri, and J. Herbert Waite.
Giant Bent-Core Mesogens in the Thread Forming Process of Marine Mussels.
<p>| 319 | NSF MRSEC DMR 9968640, NSF MRL DMR00-80034, NIH GM65354, NASA/AURETI 0000532, Danish Research Council (STVF), Deutsche Forschungsgemeinschaft (DFG) 568/2-1 | High-Speed Photography of Human Trabecular Bone during Compression | Mater. Res. Soc. Symp. Proc. Vol. 874 (2005), L1.2.1 |
| 322 | NSF UCSD MRL DMR00-80034, NIH GM65354, by the NASA BIMAT BMAT URETI NCC-1-02037, Veeco #SB003071, FWF J2395-N02, SNF PA002—108933 and PBEZ—105116, and a DOCFellowship of the OeAW. | Design and Modeling of a High-Speed Scanning System for Atomic Force Microscopy | Accepted, American Control Conference 2006 |
| 323 | SNF PBEZ—105116, FWF J2395-N02, OAW DOC-Fellowship, NIH GM65354, Veeco/DI SB003071, MRL NSF DMR00-80034, NASA/AURETI BMAT NCC-1-02037, USARL (ICB) DAA19-03D-0004, USARIEM (ICB) | High Speed Photography of Compressed Human Trabecular Bone Correlates Whitening to Microscopic Damage | Submitted to Engineering Mechanics, 1/11/06 |
| 325 | UCSB MRL DMR00-80034, NIH GM65354, NASA BMAT URETI NCC-1-02037, Veeco | High-Speed Photography of the Development of Microdamage in Trabecular Bone During Compression | Submitted to Ultramicroscopy, 2006 |</p>
<table>
<thead>
<tr>
<th>326</th>
<th>Components for High Speed Atomic Force Microscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCSB MRL DMR00-80034, NIH GM65354, NASA BIMAT URET1 NCC-1-02037, Veeco #SB030071, SNF PA002–108933, OeAW DOC-Fellowship, SNF PBEZ2–105116.</td>
<td>Submitted, 4th IFAC-Symposium on Mechatronic Systems, Heidelberg 2006</td>
</tr>
</tbody>
</table>

Design and Characterization of a Novel Scanner for High-Speed Atomic Force Microscopy